What is BIM (Building Information Modeling)

July 17, 2018 Sarah Lorek

Across the world, BIM (Building Information Modeling) is becoming a crucial and even mandated process to ensure the planning, design, and construction of buildings is highly efficient and collaborative. Read on to discover what BIM is, how BIM is used, and what BIM levels mean.

 

What Is BIM?

BIM is a highly collaborative process that allows multiple stakeholders and AEC (architecture, engineering, construction) professionals to collaborate on the planning, design, and construction of a building within one 3D model. It can also span into the operation and management of buildings using data that owners have access to. This data allows owners and stakeholders to make decisions based on pertinent information derived from the model— even after the building is constructed.

 

From Blueprints to CAD to BIM

In the past, blueprints and drawings were used to express information about a particular building plan. This 2D approach made it very difficult to visualize dimensions and requirements. Next came CAD (Computer Aided Design), which helped drafters see the benefit of plans in a digital environment. Later on, CAD turned 3D, which brought more realistic visuals to blueprints. Now, BIM (Building Information Modeling) is the standard— but it’s more than just a 3D model.

 

BIM Objects

BIM objects, the components that make up a BIM model, are intelligent, have geometry, and store data. If any element is changed, BIM software updates the model to reflect that change. This allows the model to remain consistent and coordinated throughout the entire process so that structural engineers, architects, MEP engineers, designers, project managers, and contractors can work in a more collaborative environment.

 

The “I” in BIM

BIM, as a whole, refers to the process of all parties involved in the construction and lifecycle management of built assets, working collaboratively and sharing data. However, the true power of BIM lives in the “I” (information). All of the information gathered— from conception to completion— isn’t just stored, it’s actionable. The data can be used to improve accuracy, express design intent from the office to the field, improve knowledge transfer from stakeholder to stakeholder, reduce change orders and field coordination problems, and provide insight into existing buildings for renovation projects later on.

 

How Is BIM Information Shared?

This information in a BIM model is shared through a mutually accessible online space known as a common data environment (CDE), and the data collected is referred to as an 'information model'. Information models can be used at all stages of a building’s life; from inception to operation— and even renovations and renewals.

Now that we’ve covered what BIM is and how it can be used, let’s move on to BIM levels.

 

What are BIM Levels?

Different levels of BIM can be achieved for various types of projects. Each level represents a different set of criteria that demonstrates a particular level of ‘maturity.’ BIM levels start with 0 and go to 4D, 5D, and even 6D BIM. The purpose of these levels is to gauge how effectively, or how much information is being shared and managed throughout the entire process.

So what does each level involve, and how can you identify which at which level you’re working? Below are brief descriptions of the first three levels and an explanation of what criteria is involved at each stage.

 

Level 0 BIM

Level 0 BIM refers to not operating collaboratively at all. If you’re using 2D CAD and working with drawings and/or digital prints, you can safely say you’re at level 0. Today, most of the industry is working above this level, although there is still some unease amongst professionals who are uneasy about introducing a new process.

 

Level 1 BIM

Using 3D CAD for concept work, but 2D for drafting production information and other documentation, probably means you're working Level 1 BIM. At this level, CAD standards are managed to the standard of BS 1192:2007, and electronic sharing of data carried out from a common data environment (CDE) usually managed by the contractor. Many firms are at Level 1 BIM, which doesn’t involve much collaboration, and each stakeholder publishes and manages their own data.

 

Level 2 BIM

Level 2 BIM begins to add in a collaborative environment. BIM Level 2 was actually made a mandatory requirement in April of 2016 on all publicly tendered projects in the UK. At level 2, all team members use 3D CAD models but sometimes not in the same model. However, the way in which stakeholders exchange information differentiates it from other levels. Information about the design of a built environment is shared through a common file format. When firms combine this with their own data, they save time, reduce costs, and eliminate the need for rework. Since data is shared this way, the CAD software must be capable of exporting to a common file format, such as IFC (Industry Foundation Class) or COBie (Construction Operations Building Information Exchange).

 

Level 3 BIM

BIM level 3 is even more collaborative. Instead of each team member working in their own 3D model, Level 3 means that everyone uses a single, shared project model. The model exists in a ‘central’ environment and can be accessed and modified by everyone. This is called Open BIM, meaning that another layer of protection is added against clashes, adding value to the project at every stage. The UK Government is even committed to Level 3 BIM being prerequisite for all projects in the coming years.

 

The Future of BIM

Because of the clear benefits, it’s certain that BIM is here to stay. It has defined goals and objectives that are clearly beneficial to all those who work their way through the levels. Undoubtedly, the future of construction will be even more highly collaborative and digital. As BIM becomes increasingly more sophisticated, 4D, 5D, and even 6D BIM will start to play a part in the process. Furthermore, around the globe, there is an attempt to reduce waste in construction. Much of this is attributed to supply chain inefficiencies, clashes, and reworking. By working collaboratively in a BIM environment, all of this becomes much less likely, setting the stage for a better tomorrow.

 

 

About the Author

Sarah Lorek

Sarah is the Global Content Manager/Editor for Constructible and Trimble MEP. She has worked on many large scale marketing campaigns for Fortune 500 companies, helping them define their story and shape a compelling narrative. Now, she focuses on creating and sourcing valuable thought leader content for our readers.

Follow on Google Plus Follow on Twitter Follow on Linkedin Visit Website More Content by Sarah Lorek
Previous Article
How HVAC LOD Levels Impact Your 3D BIM Model
How HVAC LOD Levels Impact Your 3D BIM Model

LOD, or Level of Development, can have a major impact on the size of your HVAC model, as well as the amount...

Next Article
Winning With BIM: Lessons From This Year's World Cup
Winning With BIM: Lessons From This Year's World Cup

Europe is leaving the rest of the world behind this year when it comes to soccer - and BIM. However, there ...